
Voith's CODE - Notes Fields Extractor Sample

Last updated; April 19th, 2011

Notes Fields Extractor is still undergoing development, and thus both the application and the
documentation are likely to change.

Also note that the trial-version of Notes Fields Extractor has some limitations;
Maximum 5 documents will be extracted for each runl

All extracted images will be watermarked by Voith's CODE logol

The XML depth may be altered.l

What is Notes Fields Extractor?

Notes Fields Extractor (NFE) is a tool to aid you, the programmer, to extract content from Lotus Notes
documents. It is shipped as a Windows 32-bit DLL with an accompanying dialog box executable.

You control the operation and what to extract via either LotusScript or @Formula-language functions.
As soon as LotusScript or @formula commands tell NFE to extract documents, it will launch the small
user interface seen below;

Version History

Release Date Description

1.0.0.x Initial shipdate The initial release

1.0.0.342 19. APR. 2011 Introduced the options ImageFileNameFormula and
AttachmentFileNameFormula. These options allow the user to
place images and attachments in specified directories and
specify the naming of the files. Since the formulas are
evaluated against the active Notes documents, the user can
use any valid @-formula! This means that you can name your
images with employee-numbers or whatever content you may
have in your documents.

Below you will see a short description of the LotusScript functions. Please refer to the Agents within
this database for practical implementations of the functions.

Name Declaration Description

NFEGetMajorVe
rsion

Declare Function
NFEGetMajorVer
sion Lib
"NDBVCNFE.DLL
" Alias
"NFEGetMajorVer
sion" () As Long

Get the major version from the DLL. This function is typically
used to identify the NFE version if you need to have separate
LotusScript logic according to evolving capabilities in newer
versions of NFE. The format of the version number is;
<major version>.<minor version>.<feature
version>.<buildnumber>, a full example of a complete version
number could be 1.0.0.286 or 1.1.0.567

NFEGetMinorVe
rsion

Declare Function
NFEGetMinorVer
sion Lib
"NDBVCNFE.DLL
" Alias
"NFEGetMinorVer
sion" () As Long

Get the minor version from the DLL. See
NFEGetMajorVersion for more details

NFEGetBuildNu
mber

Declare Function
NFEGetBuildNum
ber Lib
"NDBVCNFE.DLL
" Alias
"NFEGetBuildNu
mber" () As Long

Get the build number from the DLL. See NFEGetMajorVersion
for more details

NFEGetVersion Declare Function
NFEGetVersion
Lib
"NDBVCNFE.DLL
" Alias
"NFEGetVersion"
(_
rstrVersion As
String, _
Byval iBufferLen
As Long) As Long

Get the complete version string. Remember that you must
allocate a fixed number of characters in your LotusScript string
before calling this function

NFEClear Declare Function
NFEClear Lib
"NDBVCNFE.DLL
" Alias
"NFEClear" (_
Byval pstrOptions
As String) As
Long

Clear any existing settings. This function is typically one of the
absolutely first functions to call, to ensure that you don't try to
process old left-overs from previous processing.

The parameters are;
pstrOptions -See section Valid Options below

Continue on next page

Name Declaration Description

NFESetDatabas
e

Declare Function
NFESetDatabase
Lib
"NDBVCNFE.DLL
" Alias
"NFESetDatabase
" (_
Byval
pstrNotesDatabas
e As String, _
Byval
pstrNotesServer
As String,_
Byval pstrOptions
As String) As
Long

Set the database you intend to extract documents from.

The parameters are;
pstrNotesDatabase - The database filename or replica id. The
filename can be specified either as a full path to a local
database, or to a relative filename if database is on a server.

pstrNotesServer - The server the database is on. If blank or
"Local", the database spesified by the paramater above, is
local.
pstrOptions - See section Valid Options below

NFEAddDocum
ent

Declare Function
NFEAddDocumen
t Lib
"NDBVCNFE.DLL
" Alias
"NFEAddDocume
nt" (_
Byval pstrNoteID
As String, _
Byval pstrOptions
As String) As
Long

Add a single document to the list of documents to extract. This
can be useful if you are in a loop and for example just want to
process the selected documents in a view. If you intend to
process a lot of documents, please consider using the
NFEAddAllDocumentsInView or
NFEAddAllDocumentsInViews which allows you to specify
view names and process all documents within views.

The parameters are;
pstrNoteID - A single NoteID for the document to extract
pstrOptions - See section Valid Options below

NFEAddDocum
ents

Declare Function
NFEAddDocumen
ts Lib
"NDBVCNFE.DLL
" Alias
"NFEAddDocume
nts" (_
Byval pstrNoteIDs
As String, _
Byval pstrOptions
As String) As
Long

Add a list of semicolon-separated note ids to the list of
documents to extract. This is just a variant of the function
above, which let you add a semicolon-separated list of noteids
in one go.

The parameters are;
pstrNoteIDs - A list of semicolon-separated note ids for the
documents to extract
pstrOptions - See section Valid Options below

NFEAddAllDocu
mentsInView

Declare Function
NFEAddAllDocum
entsInView Lib
"NDBVCNFE.DLL
" Alias
"NFEAddAllDocu
mentsInView" (_
Byval
pstrViewName As
String, _
Byval pstrOptions
As String) As
Long

Another way to specify documents to extract, and this time
you specify a view name or view alias, which tells NFE to
extract all documents within that view!

The parameters are;
pstrViewName - A view name or view alias of the view to
enumerate for documents to extract.
pstrOptions - See section Valid Options below

Name Declaration Description

NFEAddAllDocu
mentsInViews

Declare Function
NFEAddAllDocum
entsInViewsLib
"NDBVCNFE.DLL
" Alias
"NFEAddAllDocu
mentsInViews" (_
Byval
pstrViewNames
As String, _
Byval pstrOptions
As String) As
Long

A list of semicolon-separated view names/aliases to extract
documents from. In other words, another powerful way of
specifying lots of documents.

The parameters are;
pstrViewNames - A list of semicolon-separated view
names/aliases of the views to enumerate for documents to
extract.
pstrOptions - See section Valid Options below

NFESetIncludeF
ields

Declare Function
NFESetIncludeFie
lds Lib
"NDBVCNFE.DLL
" Alias
"NFESetIncludeFi
elds" (_
Byval
pstrListOfFields
As String, _
Byval pstrOptions
As String) As
Long

By default NFE will extract all available fields from the
documents. You can however limit the fields you want by
specifying a list of semicolon-separated field names.

The parameters are;
pstrListOfFields - A list of semicolon-separated field names to
extract from the documents
pstrOptions - See section Valid Options below

NFESetOutput Declare Function
NFESetOutput Lib
"NDBVCNFE.DLL
" Alias
"NFESetOutput"
(_
Byval
pstrBaseDirectory
As String, _
Byval
pstrOutputType
As String, _
Byval pstrOptions
As String) As
Long

Where do you want to store the extracted content? By
specifying a so-called base directory, NFE will store the main
XML in this directory, and create any necessary subdirectories
per document if they contain images, attachments or OLE
objects.

Note that this version of NFE only support XML as output type,
and that only images and attachments are extracted. OLE
objects are not supported in this version.

The parameters are;
pstrBaseDirectory - The base directory where NFE should
store the output
pstrOutputType - Leave as a blank string, for future use.
pstrOptions - See section Valid Options below

NFEExtractField
s

Declare Function
NFEExtractFields
Lib
"NDBVCNFE.DLL
" Alias
"NFEExtractField
s" (_
Byval pstrOptions
As String) As
Long

Finally, this function starts the extraction process accoring to
the preparation you have done above. Note that NFE will
launch a small dialog box informing you about the progress.
NFE is completely multitasking, so it won't lock your Notes
client while extracting data. You may therefore switch back to
Lotus Notes and continue with other work

The parameters are;
pstrOptions - See section Valid Options below

Valid Options

Almost all functions in NFE accept extra options as the last parameter. The table below specifies the
valid options and how to use them. Also note that each option has a release number when the option
was introduced. This means that you won't find support for the specified options in older releases of
NFE.

How to specify options?

Options is a text string, where each option and value is separated by a colon, like this;

option:value

For example:

ImageFileNameFormula:"D:\\Employee Images\\" + @Text(EmployeeNbr)) + ".jpg"

The option is blue while the value is green. If the option needs more than one value, each value is
separated with a comma.

Multiple option and value pairs are separated with semi-colon.

ImageFileNameFormula - 1.0.0.342

Prior to this release, NFE would dump all images in the Images-sub directory per document Note ID.
The images was given a filename corresponding to the sequence-number in the document. Think of a
formula equal to;

<Base Directory>\<Note ID>\Images\<sequencenumber>.<filetype>

An example would be:

In the screenshot above you see that the <Base Directory> has some initial directory to start with,
ending with "Documents" above. Then comes the <Note ID> subdirectory "0000092A", the hardcoded
"Images" subdirectory, and finally two sequence-numbered images with their original filetypes.

With the ImageFileNameFormula you can change this completely by specifying a full @-formula.
The formula will be executed against the current document, which means that you can use any field
value or anything that end up being a valid @-formula!

For example;
ImageFileNameFormula:"C:\\Temp\\" + @Text(@NoteID)) + ".jpg"
... will always same images to "C:\Temp\<Note ID>.jpg" filename.

ImageFileNameFormula:"D:\\Employee Images\\" + @Text(EmployeeNbr)) + ".jpg"
... will always same images to "D:\Employee Images\<the content of the field EmployeeNbr>.jpg"
filename.

Please note how I must use double backslashes to denote a single backslash in the formula. This is
common requirement in @-formula. This means that you should be sure that the formula evaluates
to something sensible before using it in NFE.

To assist you creating filenames, some special variables can be used in the formulas too. Always
remember that the variables must be placed inside quotes since they are strings. The variables are:

$(BASEPATH) - The current base directory, without trailing backslashes
$(NOTEID) - The current Note ID with leading zeros
$(SEQ) - The sequence number of the current image, with leading zeros
$(DEFFILETYPE) - The default filetype of the current image. Smart to use so you don't mess up the
file types.

Some examples with variables, the first one recreate the default path from scratch:
ImageFileNameFormula:"$(BASEPATH)\\$(NOTEID)\\Images\\$(SEQ).$(DEFFILETYPE)
"
.
A final sample;
ImageFileNameFormula:"$(BASEPATH)\\All
images\\$(NOTEID)_$(SEQ).$(DEFFILETYPE)"
... will place all images in the base directory's All images-subdirectory. The image names has a
combination of the Note ID plus the sequence number, with the default file type, such as
"0000092A_00000.jpg"

AttachmentFileNameFormula - 1.0.0.342

The same as ImageFileNameFormula, but now you address any attachments which normally was
placed in the hardcoded Attachments-subdirectory. The valid variables for this options are;

$(BASEPATH) - The current base directory, without trailing backslashes
$(NOTEID) - The current Note ID with leading zeros
$(SEQ) - The sequence number of the current attachment, with leading zeros
$(ORGATTFILENAME) - The original file name as it was attached with in the Notes document

Add Notes Fields Extractor as a button on your toolbar!

One of the ways to use Notes Fields Extractor is from a generic button in a toolbar. This
means that you can extract any selected document (note, document in singular form,
not multiple documents - this is a limitation by the toolbar-implementation in the Notes
client) from any database, without further programming.

First, open up your Preferences dialog box and select the Toolbar -section. Personally I
like to place my buttons in my own toolbar, so I can quickly locate and find my own
tools. But you can of course place the button in whatever toolbar you'd like. Below you
see how I create my own toolbar ...

... and name it Bobs Own Toolbar ...

I then navigate to the Customize -part in the Preferences dialog box;

Ensure you have selected the toolbar you want to place your button in in the field
Toolbar to Customize ; Then click on the New -button and select the Button- menu
line....

This brings up the Edit Toolbar Button dialog box, where you add some descriptive text,

select an icon and finally add some formula-code, like this;

The code that I have used so far is this;

strServer := @Subset(@DbName; 1);
strDatabase := @Subset(@DbName; -1);
strNoteID := @ReplaceSubstring(@NoteID;"NT";"");
strDefaultOutput := "C:\\Data\\Notes Fields Extractor\\Notes Menu Lanucher
Document Extract.xml";
strMsg := "Please confirm that you want to extract the field-content from
the following document;" + @NewLine + @NewLine + "Server: " + strServer +
@NewLine + "Database: " + strDatabase + @NewLine + "NoteID: " + strNoteID +
@NewLine + @NewLine + "Output is stored in: " + strDefaultOutput;
rc := @Prompt([YesNoCancel];"Notes Fields Extractor"; strMsg);
@If(rc != 1; @Return("");"");
@DbCommand("VCNFE":"NoCache";"GetFields"; strServer ; strDatabase ;
strNoteID ; ""; strDefaultOutput; "")
This code will first present a dialog box like this;

....which gives me a chance to abort. Note how I have specified the output folder too
with the parameter strDefaultOutput. This is the default folder and XML file for the
result.

